IBERS, J. A. (1957). Acta Cryst. 10, 86.

LIDE, D. R. & MANN, D. E. (1958). J. Chem. Phys. 29, 914.

NORDMAN, C. E. (1960). Acta Cryst. 13, 535.

PALENIK, G. & DONOHUE, J. (1962). Acta Cryst. 15, 564. PAULING, L. (1960). The Nature of the Chemical Bond.

Ithaca: Cornell Univ. Press. SCHOMAKER, V. & STEVENSON, D. P. (1941). J. Amer. Chem. Soc. 63, 37.

Acta Cryst. (1968). B24, 707

SPARKS, R. A., LONG, R. & TRUEBLOOD, K. N. (1964). Unpublished work.

SPENCER, C. J. & LIPSCOMB, W. L. (1961). Acta Cryst. 14, 250.

STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.

WHEATLEY, P. J. (1960). J. Chem. Soc. p. 523. WILSON, A. J. C. (1942). Nature, Lond. 150, 151.

The Crystal Structure of Compounds with $(N-P)_n$ Rings IV*. The Stable Modification (*T* Form) of Tetrameric Phosphonitrilic Chloride, $N_4P_4Cl_8$

BY A. J. WAGNER AND AAFJE VOS

Laboratorium voor Structuurchemie, Rijksuniversiteit, Groningen, The Netherlands

(Received 17 July 1967)

The T form of tetrameric phosphonitrilic chloride, $N_4P_4Cl_8$, crystallizes in the tetragonal space group $P4_2/n$ with cell dimensions a = 15.324 and c = 5.988 Å. There are four molecules in the unit cell on special positions of symmetry I. The intensities of 1080 reflexions, measured on Weissenberg films, were used in the structure analysis. Anisotropic least-squares refinement reduced the R value to 0.07. The molecules have an eight-membered $(N-P)_4$ ring and are chair-shaped with approximate symmetry 2/m. The two independent valence angles PNP are significantly different: 133.6 and 137.6°, s.d. 0.8°. This difference is explained in terms of steric interactions between chlorine atoms. No further significant differences are observed between chemically equivalent bonds or angles. Average values with individual standard deviations are: P-N 1.559 Å, s.d. 0.012 Å; P-Cl 1.992 Å, s.d. 0.004 Å; NPN 120.5°, s.d. 0.7°; CIPCl 103.1°, s.d. 0.2°.

Introduction

Tetrameric phosphonitrilic chloride (I) was first prepared by Stokes (1897).

Two crystal modifications of the compound, generally called the K and the T form, are known. The crystal structure of the K form was determined by Ketelaar & De Vries (1939). This structure has recently been refined in our department as part of a program of structure analyses of compounds having $(N-P)_n$ rings (Hazekamp, Migchelsen & Vos, 1962).

The first evidence for the existence of the T form was obtained by Chapman & Wilson (Paddock, 1964,

ref. 141) in 1960 from measurements of the pure ³⁵Cl nuclear quadrupole resonance spectrum. Preliminary X-ray work on this modification has been done by Wilson (Paddock, 1964, ref. 138).

At room temperature the T form is the stable modification. Crystallization of $N_4P_4Cl_8$ from solutions at room temperature, however, yields the metastable K form. The T form can be obtained by heating crystals of the K form to about 70°C and during the transition the crystals remain single. The T form can also be obtained directly by crystallizing $N_4P_4Cl_8$ from solutions above 70°C or from the melt.

In this paper the structure determination of the T form by X-ray diffraction is described.

Experimental

Crystals of N₄P₄Cl₈, K form, were available in the laboratory [melting point 123·4°C; literature value 122·8°C (Lund, Paddock, Proctor & Searle, 1960)]. They were transformed into crystals of the T form by keeping them at 70°C for a few hours. The density of the crystals obtained was measured by flotation [2·17 g.cm⁻³; literature value for the K form 2·18 g.cm⁻³ (Lund *et al.*, 1960)]. The crystallographic data of the two modifications are compared in Table 1. The cell dimensions of the T form were measured from a powder diffractogram, on which silicon powder lines were superposed for calibration purposes [λ (Cu K α_1)= 1·54051, λ (Cu K α_2)=1·54433 Å].

^{*} Part III: Migchelsen, T., Olthof, R. Vos, A. Acta Cryst. (1965). 19, 603.

For the intensity measurements a cylindrical crystal along the c axis was used. The intensities of the reflexions hkl with l from 0 to 5 were recorded with Nifiltered Cu radiation on equi-inclination Weissenberg photographs. Both integrated and non-integrated films were made. For the integrated photographs a special layer line screen was used, which allowed simultaneous recording of the *l*th level in equi-inclination setting and the zero level in anti-equi-inclination setting on the lower and upper half of the film respectively (Wagner, 1966).

The intensities of the reflexions with $\theta \le 60^\circ$ were measured with a densitometer on the integrated photographs. Reflexions with $\theta \ge 60^\circ$ were estimated visually from the non-integrated films. For the latter reflexions a correction for spot deformation was applied (Phillips, 1956). After correction for the Lorentz-polarization effect, and for absorption ($\mu = 182 \text{ cm}^{-1}$) according to Bond's (1959) method, the $|F|^2$ values of the different layers were scaled using the hk0 reflexions recorded on the upper half of the integrated photographs. Of the 1370 independent reflexions which could be recorded on the films, 1092 were observed to be non-zero.

Determination of the structure

As may be seen from Table 1 the unit cell of the Tform is twice as large as that of the K form and contains twice as many molecules. Both modifications belong to the space group $P4_2/n$ with eightfold general positions. The two molecules in the K form occupy a twofold special position (a) with symmetry $\overline{4}$ and are boat-shaped (Hazekamp et al., 1962). For the four molecules in the T form two fourfold special positions [(c) and (e)] with symmetry $\overline{1}$ and 2 respectively are available. Of these positions (e) can be ruled out, since it requires that in the direction of the c axis the molecules are placed at distances of only c/2=3 Å. We therefore assumed that the molecules lie at the inversion centres and are chair-shaped.

Comparison of the Weissenberg photograph of the hk0 layer with the corresponding photograph of the K form facilitated a direct solution of the structure. The reflexions common to both forms appear to have about the same intensity, whereas the additional reflexions of the T form are relatively weak. It could therefore be assumed that the positions of the atoms in [001] projection are approximately the same for the two modifications. The z coordinates of the atoms in the T form were found by transforming the boatshaped molecules of the K form into molecules which are chair-shaped. This was accomplished, as shown in Fig.1, by reflecting the half NPN'P'N" of each molecule against a plane normal to the fourfold inversion axis and passing through N and N". The structure model so derived yielded indices R of 0.18 and 0.35 for the reflexions hk0 and h0l respectively.

For the three-dimensional refinement use was made of the least-squares method. In the first few cycles with isotropic temperature factors (Schoone, 1961) 532 reflexions, chosen at random, were taken into account. The anisotropic refinement (Rollett, 1961), based on all observed reflexions of reliable intensity (1080), was kindly carried out by Dr Rollett on the Mercury computer at Oxford, England. The atomic scattering factors were taken from International Tables (1962), and the weighting scheme used was $w^{-1} = 1 + \{(|F_{obs}| -$ 59)/35}². At the end of the refinement R was 0.07. In the last cycle the maximum shift in a coordinate was 0.1 times its estimated standard deviation.

Final values for the atomic parameters are given in Tables 2 and 3 with their standard deviations as calculated by the least-squares program. In Table 4 observed and calculated structure factors are compared. The F_c values in this Table were obtained on the TR4 computer in Groningen with a program requiring analytical functions (Moore, 1963) for the atomic scattering factors.

Table 2. Fractional atomic coordinates and standard deviations

	x	У	Ζ
P(1)	-0.0646 (1)	0.1118 (1)	-0.0138(3)
P(2)	0.1085 (1)	0.0621 (1)	-0.1429 (3)
N(1)	0.0202 (4)	0.1128 (4)	-0.1567 (11)
N(2)	0.1170 (4)	-0.0250(3)	-0.0113(10)
Cl(1)	-0.0432(1)	0·1651 (1)	0.2840 (3)
Cl(2)	-0·1447 (1)	0.1963 (1)	-0.1602(4)
Cl(3)	0·1482 (1)	0·0478 (1)́	-0·4571 (3)
Cl(4)	0.1997 (1)	0.1406 (1)	-0.0122(4)

Fig.1. Central ring of a molecule in the K form (left) and in the T form (right).

Table 1. Crystallographic data of N₄P₄Cl₈

	T form	K form
Crystal system	Tetragonal	Tetragonal
Cell dimensions	$a=b=15.324\pm0.001$ Å (= $1/2 \times 10.836$)	$a = b = 10.844 \pm 0.002$ Å
	$c = 5.988 \pm 0.002$ Å	$c = 5.961 \pm 0.005 \text{ Å}$
Space group	$P4_2/n$	$P4_2/n$
Ż	4	2
Systematic	hk0 for $h+k$ odd	hk0 for $h+k$ odd
absences	00 <i>l</i> for <i>l</i> odd	001 for 1 odd

An attempt was made to interpret the anisotropic thermal movement of the individual atoms in terms of rigid body translations and rotations (Cruickshank, 1956). The least-squares fit, however, was very poor and therefore no corrections for librations were applied to the atomic coordinates.

Table 3. Thermal parameters and standard deviations ($Å^2 \times 10^{-4}$)

	U_{11}	U_{22}	U ₃₃	U_{23}	U_{31}	U_{12}
P(1)	187 (5)	208 (5)	242 (7)	12 (5)	2 (5)	26 (4)
P(2)	207 (5)	228 (5)	270 (7)	30 (5)	35 (5)	9 (4)
N(1)	270 (20)	417 (23)	500 (29)	91 (21)	60 (19)	122 (18)
N(2)	388 (21)	270 (20)	331 (27)	65 (18)	-11(19)	- 40 (16)
Cl(1)	591 (8)	481 (8)	313 (8)	-106 (6)	-43(6)	- 33 (6)
Cl(2)	325 (6)	327 (6)	543 (9)	123 (6)	- 67 (6)	92 (5)
Cl(3)	473 (8)	562 (8)	275 (8)	55 (6)	148 (6)	136 (6)
Cl(4)	395 (6)	378 (6)	563 (10)	71 (6)	- 88 (6)	— 177 (Š)

Table 4. Observed and calculated structure factors

The columns are h, $10F_o$ and $10F_c$. Reflexions indicated by an asterisk are not taken into account in the refinement.

	н, с,	0	2	430	-420	9	46	-51	15	360	-365	2	253	258	10	166	147		H. 1.	2	9	270	242
			4 2	2151	2418				16	157	148	3	253	-236	11	745	725			-	10	132	144
2	766	843	6	385	-383		н,18,	0	17	463	448	4	181	-151	12	199	-201	1	954	-1036	11	1079	1084
- 2	A12	-1957	10	696	-1004	2	284	285	10	23/	250	2	122	-86	13	203	-2/2	2	1014	570	12	435	399
ă	405	-420	12	211	223	- 4	293	-304		111	200	ž	89	50	•		~~	š	736	780	15	816	-799
10	577	-550	14	474	425	6	190	-213		н, 4,	1	8	234	215		H,14,	1	6	228	259	16	94	-91
12	804	-767	16	88	-90							9	136	109				7	779	-826	18	189	235
14	142	113			•		н,19,	0	1	520	-526	12	348	-336	1	97	-101	8	508	-510			
10	280	252	,	·, y,	0	٦	1 2 7	174		787	711	15	213	-18/		140	- 40		178	-/98		н, б,	2
	140	100	1	277	-252	•			4	334	-305	17	148	161	5	142	-96	11	168	138	1	351	-343
	н. 1.	0	3	267	-249		н, О,	1	5	723	-747	-			6	162	143	12	166	155	ź	330	-334
_			7	124	-113				6	490	-467		н, 9,	1	?	90	-91	13	656	630	3	419	-389
3	66	- 32		157	-129	1.	438	584	7	927	-941		200	. 75	8	211	-221	14	249	-228	- 4	529	-488
7	358	349	13	172	172	5	916	993	ş	438	429	12	523	-515	11	305	328	16	221	-216	6	142	183
9	208	184	17	123	162	- 4	759	756	10	346	379	3	555	540	13	159	179	• -			7	265	285
11	165	-172				5	1215	1288	12	59	58	4	237	-257					н, 2,	2	8	58	-42
13	320	275	•	4,10,	0	2	440	-431	13	157	-159	<u>,</u>	98	-72		н,15,	1		7/5	7.07	. ?	393	398
17	161	-174	2	832	827	á	745	-728	15	130	~134	ś	128	-020	1	59	-68	2	315	303	10	374	- 344
•			4	621	583	9	304	-287	19	82	103	, ý	716	-709	- 3	590	-607	3	443	472	12	270	213
	н, 2,	0	6	862	-838	10	140	121				11	398	-396	4	259	259	- 4	135	133	13	428	-410
			8	243	-242	11	613	606		н, 5,	1	12	277	272	5	281	-270	5	621	-660	14	227	224
2	65	33	10	021	-588	13	150	-151			141	13	1/3	/3/	ŝ	1/4	-100	9	234	-186	16	64	55
7	1102	1913	14	413	401	16	105	85	2	523	-491	16	114	114	8	61	-62	á	370	-100	1/	05	-91
8	1096	1141	16	196	-226	18	89	101	3	1116	-1102	17	157	-175	ġ.	520	483	9	84	56		н, 7,	2
10	100	57				19	21	31	5	98	-63				10	27	- 39	10	401	-387			-
12	1164	-1167	,	1,11,	0				6	994	983		н,10,	1	11	227	233	12	508	-522	1	467	-477
14	602	-031	•	131	123		H, 1,	1	á	238	-206	1	420	-417		H. 16.		13	70	- 35	2	195	185
10	203	800	3	130	127	1	1289	1322	ş	228	221	2	123	-99		H)10,	1	17	165	170	4	805	-786
	н, З,	0	5	138	133	2	407	423	10	201	-182	3	231	223	1	224	198	18	207	187	5	297	-279
			9	234	-253	3	45	94	11	192	-153	4	82	51	2	172	-147				6	38	32
1	78	-57	11	195	-214	- 1	863	-899	12	205	-195	2	490	474	3	103	-111		н, 3,	2	7	740	-725
5	102	-100		4.12.	0	2	1300	-1320	13	115	-140	ŝ	134	119	-	188	207		1043	4078	8	239	-213
ś	51	-57	,	.,,	v	ž	852	-851	15	89	62	ś	312	307	ź	315	-313	2	364	354	10	327	-345
11	74	-92	2 1	1505	1587	8	709	691	16	147	-139	9	140	-136	8	30	-57	3	916	958	11	787	758
17	55	64	4	205	198	9	1113	1097	17	134	-126	11	373	-366	9	232	-240	4	517	500	12	142	-141
19	81	94	6	605	-573	10	232	-225	18	111	113	14	118	114				5	138	117	15	130	123
	ы. А.	0	10	149	152	11	389	391		H. A.	1	19	107	¥/		н,1/,	1	3	493	-400	10	394	419
		•	12	65	49	13	785	-762			•		H.11.	1	1	111	105	8	446	447	11	~ ~ ~	- 50
2	2175	-3343	14	669	-699	14	574	559	1	299	299			-	ž	217	215	ÿ,	334	-326		н, 8,	2
4	1360	-1497		-	-	15	584	532	2	217	176	1	1058	1065	3	212	195	10	715	715			
6	1378	1541	٠	1,13,	0	10	259	-249	3	162	123	2	136	-122	- 2	165	-151	11	500	-460	1	483	-478
10	201	-647	3	192	187	18	27	-17	5	284	-292	4	135	102	7	122	-128	13	230	-210	2	123	114
12	635	590	š	174	177	19	155	175	6	320	-293	5	232	-210	ė	123	133	14	267	-241	4	500	460
14	41ć	-359	7	126	115				7	482	482	6	432	436	9	111	120	15	417	-408	5	515	-508
18	293	310	9	65	65		н, 2,	1	8	155	-154	7	165	151				16	297	-290	6	138	-116
	e	•	11	119	125		274	- 204	- v	70	- 69		400	-382		н,18,	1	17	88	-72	7	359	361
	H, 5,	-0			n	2	520	528	11	195	-170	10	213	-102		188	182		w. A.	2		730	-528
1	211	181			°.	3	424	-452	12	76	-74	11	239	-242	â	70	70			د	10	220	-205
3	65	65	2	211	-189	4	781	791	14	84	- 79	15	378	-402	3	271	282	1	153	150	ĩi	97	-87
5	61	76	4	111	122	5	105	-114	15	57	-60	16	120	161	6	159	-152	2	465	-422	12	132	141
2	163	140		132	105		34/	-3/6	10	32	71		L 42			u .a		3	4(9	401	14	185	162
11	223	-226	12	39	-27	ĕ	798	809	1,	/0	1			-			1	5	180	184	10	1/0	-10/
15	165	-164		• ·	2.	10	116	95		н, 7,	1	1	73	-60	1	21	41	6	725	748		н, 9,	2
17	82	-97	+	1,15,	0	11	473	457				2	168	-167	3	59	-56	7	470	-467			
		-				12	149	-134	1	182	-177	3	309	307			-	8	565	552	1	168	176
	н, е,	0	1	92	-119	13	220	-200	2	998	-994	4	249	-240		н, с,	2		88	-112	2	66	-67
2	660	-666	3	126	-150	16	66	-61	4	478	-472	6	220	209	1.	863	-1098	11	154	162		777	799
4	862	-796	9	105	-90	17	208	-196	5	61	-58	7	500	498	2	189	183	13	592	-573	5	744	-734
6	600	573	11	143	156				6	355	363	10	259	-245	3	232	-230	15	127	-133	6	453	433
8	507	-473			•		н, з,	1	7	489	-466	11	237	-243	- 1	577	-580	16	50	-78	?	914	-907
10	546	537	۲		U	1	936	-917	ş	483	469	14	240 54	71	6	309	-299	1/	334	-62	8	106	-158
18	431	-485	4	577	-548	2	1371	1359	10	189	183	15	82	-98	ž	487	-523	10		2	11	398	-360
		-	6	705	-712	3	1216	1221	11	554	537	-			8	242	227		н, 5,	2	12	473	-452
	н, 7,	0	8	656	686	4	1097	-1144	12	138	-133		н,13,	1	9	65	-27			_	13	269	-234
-	50	-62	10	400	415	5	511	-482	13	270	250			- 9 2	11	574	552	1	70	31	15	232	225
5	105	107			0	7	135	156	15	658	624	1	166	-126	13	440	450	3	549	524	10	144	157
ź	401	373			-	9	120	126	16	58	-75	4	455	465	14	269	278	4	554	-566		н.10-	2
9	159	170	1	192	186	10	372	-382	17	234	-225	5	386	361	15	155	-129	5	550	555			-
			3	74	98	11	908	-879				6	138	-127	16	195	187	6	447	-437	2	508	478
	н, е,	0	2	24	-01	13	638	-608		м, 8,	1	8	102	-137	1/	203	-187	?	234	180	3	330	-364
																							//

5	168	-165	5 136	-129	14 45	-439	4 144	-114	11 288	-253	6 215	-218	H,16, 4	7 228 229
7	136	131	7 127	-119	16 24	-235	7 135	-132	13 335	323	8 89	105	3 169 -214	10 539 521
9	215	-222	H.18.	2	17 8	68 (12 77	78	14 55	-59	9 346	320	N. 0. 5	11 81 -98
11	107	119		-	н, 1	. 3	14 131	172	16 111	100	11 447	437	., ., .	13 148 -185
12	189	176	1 176	166	1 13	74	H.12.	3	н. 2.		15 55	-58	2+ 150 -159	W. 7. 5
15	139	164	3 149	-154	2 47	-453		•			H, 8.	4	5 270 -264	
10	115	-152	4 100	-112	3 25	201	1 258	-278	1 750	-755	3 122	-156	7 104 89	2 148 107
	H+11+	2			5 5	56	3 155	138	3 517	-520	4 425	427	9 574 520	5 148 -140
1	237	-180	м, О,	3	7 8	-72	4 213 5 148	-248	4 188 5 313	180	5 176	163	10 72 -87	7 126 -125 8 575 -566
2	461	-447	1* 619	792	8 25	244	6 986	1007	6 323	340	7 89	-104	12 266 228	9 112 113
4	421	398	2 280	298	13 14	-150	7 161	-175	7 162	-155	10 193	-111	13 144 -151	11 203 194
5	369	343	4 1183	1251	14 11	98	9 243	-259	11 246	278	11 440	455		10 017 010
,	451	429	5 46/	-46/	15 6;	53	10 542	-554	12 82	53	14 66	-65	H, 1, 5	H, 8, 5
8	27C	306	8 1591	-1609	Н, (. 3	H,13,	3	14 55	-28	Н, 9,	4	1* 105 135	1 470 -468
10	231	-195	10 128	103	1 304	312	2 155	146	15 142	112	1 245	272	4 249 -244	3 393 -381
13	174	-171	14 144	129	2 13	135	4 53	58			2 259	256	6 234 221	5 73 -59
14	154	=203	10 4//	-92	4 925	-452	0 103 7 195	-165	н, 3,	. 4	4 378 5 789	-376	7 336 -319	6 539 -522
			••••••		6 36	-378	8 142	-156	1 378	343	6 274	-289	10 124 -131	9 124 122
	Н,12,	2	н, 1,	3	7 280	218	9 97	114	3 902	888	7 340	-345	11 135 -174	10 165 134
1	624	580	1 135	-54	9 344	-361			5 225	-194	9 305	299	13 249 -244	12 128 -150
- 2	97	-84	2 255	258	10 686	672	H,14,	3	7 393	400	10 132	-143	U. 2. E	N. 0. 6
6	136	-146	5 49	27	14 50	-503	2 358	-368	9 124	126	12 55	-79	A) 2) J	
é	186	-175	7 105	-100	16 192	-189	4 216	243	10 168	-184	14 106	147	1 332 -332	1 128 118
. 9	258	-261	8 338	-353	17 10	132	5 174	200	13 266	218	H.10,	4	3 249 -237	3 162 156
11	297	-320	10 124	-131	н, 7	, 3	10 163	185	14 88	-264	1 176	166	4 419 399 5 297 -281	4 228 245
12	196	208	11 97	81	7 404		11 112	139	16 111	113	2 88	-86	7 140 -141	8 362 -381
	101	-207	14 105	112	4 338	-284	Н,15,	3	Н, 4,	4	4 86	-03	8 354 -330 9 127 -125	9 211 -195
	н,13,	2	16 134	134	5 11	107	• • • •				5 229	-261	10 285 -226	
1	85	-86	1/ 1/4	1/0	7 54	-102	3 136	-156	2 584	-1/2	8 209 7 415	-399	12 144 110	H,10, 5
23	138	122	н, 2,	3	8 57	71	4 111	103	3 178	176	9 68	82	14 19 -33	1 203 204
4	192	-179	1 689	699	10 11	-122	6 158	213	5 76	-78	10 156	-66	н, 3, 5	3 201 -210
5	1 32	188	2 681	684	11 104	113	9 93	94 -74	7 328	-363	-		4 404 -404	4 221 204
7	475	478	4 1512	1602			10 00		9 343	-339	A,11,	-	2 282 -262	7 269 -280
9	107	-97	5 237	-240	н, (. 3	H+16,	3	11 258	-246	1 78	108	3 454 424	8 154 141
10	131	-129	7 278	250	1 70	-58	1 74	-79	13 293	265	3 173	199	5 140 -141	10 107 -95
12	159	-191	9 211	209	2 190	-319	2 495	-507	14 120	107	4 122	-95	6 327 300	
	N. 14.		10 326	-287	4 850	-835	4 350	365			6 115	-117	10 300 -286	R/11/ J
	11111	4	13 97	-172	6 707	-710	6 211	-208	н, 5,	•	/ 346 9 359	-382	11 351 - 338 13 203 - 183	1 356 337
1	94	-101	14 368	343	7 27:	252	7 150	-172	1 380	384	11 246	-271	14 209 252	4 199 220
- 4	154	-128	16 381	-393	9 10	-135	0 1/0	-224	3 249	224	H,12,	4	н. 4. 5	5 57 -87
5	242	245	17 178	-200	10 31	320	Н,17,	3	4 436	432				7 186 147
ž	55	-44	н, З,	3	13 76	-77	2 54	-73	8 151	177	2 119	144	1 580 542	8 228 224
10	190	-61	1 142	- 63	14 258	269	4 84	-73	9 212	193	3 316	325	4 324 293	10+ 139 229
11	150	-165	2 648	636	н, 9	, 3	5 50	• 3	11 662	655	9 82	-18/	7 128 107	H,12, 5
12	88	-94	3 80	-66	1 69	30	Н, О,	4	12 282	-281	11 85	-108	9 384 -371	
	н,15,	2	5 94	19	3 119	-82	1 * 238	335	14 181	-188	Н,13,	4	11 453 -440	2 150 -133
1	384	-370	6 103 7 134	-79	4 190	161	2 114	119	15 469	-590	3 210	-213	14 273 -406	3 199 190
2	58	55	8 115	109	6 211	219	5 352	350	10 119	104	4 68	-82	H, 5, 5	6 297 302
4	144	149	9 139 12 250	-129	7 127 8 70	-118	6 245 7 600	223	Н, б,	4	5 562	557 72	1 148 +20	7 190 -209
7	284	-404	14 50	-81			10 251	-254	1 289	290	7 542	556	2 135 100	5 100 199
9	118	118	17 105	116	H,10	. 3	12 119	-150	3 /62	749	10 34	-38	3 217 -187	.H,13, 5
		•			1 503	-521	14 55	-20	5 215	200	H,14,	4	6 128 118	2 251 -257
	H)10)	4	H, 4,	3	2 313	-205	19 142	-127	7 88 8 278	98 -291	1 45	-43	7 621 609	3 118 -104
3	162	-154	1 359	343	4 65	-86	H+ 1+	4	9 176	-156	2 100	86	9 101 109	. 207 -204
6	96	-39	2 1090	1/28	5 284	-393	1+ 184	-221	11 73	78	3 282	-270		H,14, 5
7	245	254	4 415	-418	8 43	421	2 313	- 35 1	15 147	-196	, 200		14* 144 252	2 155 -156
10	219	233	5 444 6 746	-443	10 186	-202	3 673	686 289	н. 7.		H,15,	4	H. 6. 5	3 96 98
		•	7 311	294	13 136	136	5 740	750		•	1. 593	-667	., ., .	
	n,1/)	4	9 88 9 88	912 83	N,11	. 3	6 489 7 623	-473	1 440	428	2 147	133	2 336 -306	
ş	114	105	10 519	519			8 430	-432	3 882	-876	4 118	-112	4 297 -278	
4	138	130	12 241	232	2 127	+143	9 443	-439	4 259	243	5 140 7 193	141	5 576 535	

Table 4 (cont.)

Description of the structure

The structure of the T form is shown in [001] projection in Fig. 2(a). The intermolecular $Cl \cdots Cl$ distances shorter than 3.9 Å are listed in Table 5. They are all longer than the $Cl \cdots Cl$ distance expected from conventional van der Waals radii, which is 3.60 Å. One $Cl \cdots Cl$ contact, $Cl(2, A) \cdots Cl(2, E)$, 3.62 Å, is shorter than the nearest $Cl \cdots Cl$ contact in the K form, 3.68 Å.

The structure of the K form is shown in [001] projection in Fig. 2(b). On comparing the two structures the great similarity of the atomic arrangement in the [001] projections is evident. The main point of differ-

Table 5. Intermolecular distances shorter than 3.9 Å

Atoms related by a centre of symmetry are distinguished by a dash. Letters refer to molecules centred at (see Fig.2):

A (0,0,0)	$C(\frac{1}{2},$	$0,\frac{1}{2}$) $E(-\frac{1}{2},\frac{1}{2},0)$	
B (0,0,1)	D (0,	$\frac{1}{2}, \frac{1}{2}$	
$Cl(1, A) \cdots Cl(2, B)$ $Cl(1, A) \cdots Cl(3, B)$ $Cl(1, A) \cdots Cl(2, D)$ $Cl(1, A) \cdots Cl(4', D)$	3·70 Å 3·77 3·76 3·75	$Cl(2, B) \cdots Cl(3', D)$ $Cl(4, A) \cdots Cl(3, B)$ $Cl(4, B) \cdots Cl(4', C)$ $Cl(4, B) \cdots Cl(3', C)$	3·86 Å 3·70 3·86 3·88
$\frac{\operatorname{Cl}(1,B)\cdots\operatorname{Cl}(3',D)}{\operatorname{Cl}(2,A)\cdots\operatorname{Cl}(2,E)}$	3·74 3·62	$Cl(4', C) \cdots Cl(4', D)$	3.69

ence between the two crystal structures is the conformation of the eight-membered ring of the molecules,

710

which is boat-shaped in the K form and chair-shaped in the T form (Fig. 3).

The intramolecular distances and angles in the T form are given in Table 6. The standard deviations listed in the Table are twice those obtained from the standard deviations in the coordinates (Table 2).

Table 6. Intramolecular distances and angles

Atoms related by a centre of symmetry are distinguished by primed numbers.

P(1) -N(1) P(2) -N(1) P(2) -N(2) P(1')-N(2) P(1) -Cl(1) P(1) -Cl(2) P(2) -Cl(3) P(2) -Cl(3) P(2) -Cl(3) P(3) -Cl(3) -Cl(3) P(3) -Cl(3) -Cl(3) P(3) -Cl(3) -Cl(3) -Cl(3) P(3) -Cl(3) -C	1.557 (12) Å 1.563 (12) 1.555 (12) 1.561 (12) 1.989 (4) 1.988 (4)	N(2')P(1) N(1) N(1) P(2) N(2) P(1) N(1)P(2) P(2) N(2)P(1') Cl(1)P(1) Cl(2) Cl(3)P(2) Cl(4) Cl(1)P(1) N(1)	$119.3 (7)^{\circ}$ $121.7 (7)$ $133.6 (8)$ $137.6 (8)$ $103.3 (2)$ $102.9 (2)$ $110.6 (5)$
P(1) -Cl(2)	1·988 (4)	Cl(3) P(2) Cl(4)	102·9 (2)
P(2) -Cl(3)	1·990 (4)	Cl(1) P(1) N(1)	110·6 (5)
P(2) -Cl(4)	2·002 (4)	Cl(1) P(1) N(2')	110·4 (5)

Table 6 (cont.)

$P(1) \cdots P(2)$	2.867 (4)	Cl(2)P(1)N(1)	105.5 (5)
$P(1) \cdots P(2')$	2.905 (4)	Cl(2) P(1) N(2')	106.3 (5)
$P(1) \cdots P(1')$	3.961 (4)	Cl(3)P(2)N(1)	105.7 (5)
$P(2) \cdots P(2')$	4.198 (4)	Cl(3) P(2) N(2)	111.0 (5)
$N(1) \cdots N(2)$	2.722(17)	Cl(4)P(2)N(1)	109.0 (5)
$N(1) \cdots N(2')$	2.691(17)	Cl(4) P(2) N(2)	105.0 (5)
$N(1) \cdots N(1')$	3.981 (17)		. ,
$N(2) \cdots N(2')$	3.668(17)		

The molecules have four independent P–N bonds of equal length. The observed value, 1.56 Å, is considerably smaller than the length of a P–N single bond (1.77 Å; Hobbs, Corbridge & Raistrick, 1953; Cruickshank, 1964). The occurrence of short P–N bonds is a general phenomenon for phosphonitrilic molecules, as may be seen from Table 7. The small bond lengths indicate that the ring bonds have appreciable double

Table 7. Geometry of phosphonitrilic molecules

			2 3 1			
АВХ	Symmetry	A–B	BAB	ABA	XBX	Literature
$N_3P_3F_6$	т	1·56 Å	120°	119°	99°	Dougill (1963)
N ₃ P ₃ Cl ₆	m	1.59	120	120	102	Wilson & Carroll (1960)
$N_4P_4F_8$	ī	1.51	147	123	100	McGeachin & Tromans (1961)
$N_4P_4Cl_8(K)$	4	1.57	131	121	103	Hazekamp et al. (1962)
$N_4P_4Cl_8(T)$	Ī	1.56	134, 138	121	103	• • •
$N_4P_4Me_8$	4	1.60	132	120	104	Dougill (1961)
$N_4P_4(NMe_2)_8$	4	1.58	133	120	104	Bullen (1962)
$N_6P_6(NMe_2)_{12}$	3	1.56	148	120	103	Wagner & Vos (1965)

Fig. 2. [001] projection: (a) T form and (b) K form. Solid lines outline the unit cell.

bond character. The formation of double bonds by $d\pi(P) - p\pi(N)$ overlap and their delocalization in the ring has been discussed in a great many papers; see *e.g.* Cruickshank (1961) and Craig & Paddock (1962).

Equal lengths have also been found for the four independent P-Cl bonds. The observed P-Cl distance is equal to that in $N_4P_4Cl_8$, K form, and in OPCl₃ (Sutton, 1958).

The two independent valence angles NPN are equal within experimental error. As seen in Table 7 the average value of 120.5° agrees well with the endocyclic angles at phosphorus observed in other phosphonitrilic molecules. The same is true for the exocyclic angles CIPCI.

There is, on the other hand, a significant difference of 4.0° between the two independent ring angles PNP. Reference to Table 7 makes it clear that the larger angle of 137.6° is indeed significantly greater than any of the angles PNP in other non-planar phosphonitrilic molecules. (The hexameric dimethylamide is an exception which will be discussed in the next paper of this series.) The relatively large value of the angle P(2)N(2)P(1')is a consequence of the chair-conformation of the $(N-P)_4$ ring, which makes four of the eight $Cl \cdots Cl$ distances between chlorine atoms of neighbouring phosphorus atoms different from those in the boatconformation (see Table 8 and Fig. 3). In particular, the distance between Cl(1') and Cl(3) is short. From a model of the molecule it became clear that a normal value for the angle P(2)N(2)P(1') would result in a still shorter $Cl(1') \cdots Cl(3)$ distance.

Table 8. Intramolecular Cl···Cl distances

Т	K
5∙62 Å	5∙62 Å
4.14	4.23
5.34	5.38
5.42	5.41
3.78	
5.51	
5.26	
5.33	
	$T \\ 5.62 Å \\ 4.14 \\ 5.34 \\ 5.42 \\ 3.78 \\ 5.51 \\ 5.26 \\ 5.33 \\ $

The molecular symmetry, which is strictly \overline{I} , approximates to 2/m. This is illustrated in Fig. 4 and in Table 9. As pseudo-mirror plane is taken the best plane through P(1)Cl(1)Cl(2) and the centrosymmetrically related PCl₂ group. The deviations from 2/m symmetry are reflected best in the values of the dihedral angles of the ring bonds (Fig. 4). These angles should be equal in pairs, if the symmetry were indeed 2/m. In point of fact the difference between the dihedral angles belonging to P(1)-N(1) and P(1')-N(2) is as much as 17° and that between the angles belonging to P(2)-N(1) and P(2)-N(2) is 25°.

We thank Professor E. H. Wiebenga for his interest throughout the course of this investigation and we acknowledge the collaboration with Drs Trijntje Wichertjes and Drs J. L. de Boer during part of the

Table 9. Distances of the atoms from the pseudo-mirror plane 0.8011x + 0.4615y - 0.3810z = 0 (x, y, z in Å)

P(1)	0∙029 Å	P(2)	2∙098 Å
$\hat{Cl(1)}$	-0.011	N(1)	1.403
Ċl(2)	-0.023	N(2)	1.285
		Cl(3)	3.201
		Cl(4)	3.473

work. We are grateful to Dr J.S. Rollett of the University of Oxford, England and to the staff of the Computing Centre of the University of Groningen for performing the calculations.

Fig. 3. Molecule $N_4P_4Cl_8$: (a) in the T form and (b) in the K form.

Fig.4. Molecule $N_4P_4Cl_8$ (*T* form) projected on the pseudomirror plane (see text). The numbers are the dihedral angles of the ring bonds.

References

- BOND, W. L. (1959). Acta Cryst. 12, 375.
- BULLEN, G. J. (1962). J. Chem. Soc. p. 3193.
- CRAIG, D. P. & PADDOCK, N. L. (1962). J. Chem. Soc. p.4118.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 749, 754, 757.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. p. 5486.
- CRUICKSHANK, D. W. J. (1964). Acta Cryst. 17, 671.
- DOUGILL, M. W. (1961). J. Chem. Soc. p. 5471.
- Dougill, M. W. (1963). J. Chem. Soc. p. 3211.
- HAZEKAMP, R., MIGCHELSEN, T. & VOS, A. (1962). Acta Cryst. 15, 539.
- HOBBS, E., CORBRIDGE, D. E. C. & RAISTRICK, B. (1953). Acta Cryst. 6, 621.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KETELAAR, J. A. A. & DE VRIES, T. A. (1939). Rec. Trav. chim. Pays-Bas, 58, 1081.
- LUND, L. G., PADDOCK, N. L., PROCTOR, J. E. & SEARLE, H. T. (1960). J. Chem. Soc. p.2542.

- McGeachin, H. McD. & TROMANS, F. R. (1961). J. Chem. Soc. p.4777.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PADDOCK, N. L. (1964). Quart. Rev. Chem. Soc. Lond. 18, 2, 168.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- ROLLETT, J. S. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- SCHOONE, J. C. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- STOKES, H. N. (1897). Amer. Chem. J. 19, 782.
- SUTTON, L. E. (1958). Tables of Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. no.11. London: The Chemical Society.
- WAGNER, A. J. & Vos, A. (1965). Rec. Trav. chim. Pays-Bas, 84, 603.
- WAGNER, A. J. (1966). Thesis, Univ. of Groningen.
- WILSON, A. & CARROLL, D. F. (1960). J. Chem. Soc. p. 2548.

Acta Cryst. (1968). B24, 713

The Crystal Structure of the Molecular Complex Formed by Acetonitrile and Bromine in the Mole Ratio 2:1

BY K.-M. MARSTOKK AND K.O. STRØMME

Department of Chemistry, University of Oslo, Oslo 3, Norway

(Received 10 July 1967)

The crystal structure of the molecular complex formed by two molecules of acetonitrile and one molecule of bromine (melting point -41.5 °C) has been determined from three-dimensional X-ray data obtained at -70 °C. The monoclinic unit cell of dimensions: a=13.94, b=6.19, c=5.14 Å and $\beta=114.9^{\circ}$ contains two molecules of bromine and four molecules of acetonitrile. The space group is C2/m. The structure exhibits linear, centrosymmetric groups of nitrogen-halogen-halogen-nitrogen atoms. The interhalogen bond length is 2.328 Å, and the nitrogen-halogen distance is 2.84 Å. The complex is apparently weakly bonded, and in this respect it differs from the complexes formed by halogen and aliphatic amines or other nitrogen containing compounds. Bond properties are discussed. Nuclear magnetic resonance spectra taken at 77°K agree with a model wherein the methyl group rotates about its threefold axis. The X-ray data requires this rotation to be associated with preferential orientations of the methyl group and is thus restricted.

Introduction

The crystal structures of molecular 1:1 complexes formed by amines and halogen molecules so far reported in the literature exhibit a common feature in that the nitrogen atom of the organic molecule forms, with the attached halogen molecule, an approximately linear grouping in the solid (Hassel & Rømming, 1962).

In these compounds the nitrogen atom is believed to acquire a formal positive charge, whose counterpart, to the extent of say roughly half a unit, is transferred by delocalization of the σ electrons of the group in the bond formation to the outer halogen atom. The latter is always the more electronegative in cases of hetero-halogen molecular acceptors. The central halogen atom is further believed to become only slightly charged.

These complexes are all 'strong' charge transfer complexes. This is indicated by the short nitrogen-halogen bond distances compared with the accepted van der Waals distances; the elongated halogen-halogen bond distances compared with the corresponding gas phase values; the high values of the heats of formation and melting points; *etc.* Many complexes involving sulphur compounds show similar relationships (Hassel & Rømming, 1962; Briegleb, 1961).

Weaker complexes containing ethers, ketones, alcohols or benzene as donors, and homo-halogen mol-